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The paper studies the approximation behavior of a linear subspace U in /°; i.e,,
in R” equipped with the maximum norm. As a principal tool the Plicker—
GraBmann coordinates of U are used; they allow a classification of the index set
{1, .., n} through which we determine the extremal points of the intersection of the
orthogonal complement U+ of U and the closed /}-unit ball in R”", leading to the
dual problem. As a consequence, we describe the metric complement U of U and
give a decomposition of R"\U into a finite set of pairwise disjoint convex cones on
which the metric projection P, has some characteristic properties. In the
Chebyshev case, e.g., the metric projection is linear on these cones and, conse-
quently, globally Lipschitz continuous. A refinement allows an analogous statement
for the strict approximation, proving a conjecture of Wu Li. Besides the strict
approximation, we are studying continuous selections of P with and without the
Nulleigenschaft, and characterize those subspaces U which admit a linear
selection.  © 1994 Academic Press, Inc.

1. A CLASSIFICATION BY PLUCKER-GRABMANN COORDINATES

Let us denote the Euclidean space R”, ne N, endowed with the maxi-
mum norm |{-|,, by /°; its elements are considered to be column vectors;
in particular, e, denotes the vth standard basic vector. Let U be an
r-dimensional subspace of /7, 0 <r=dim U<n—1, to exclude the trivial
cases', and let 4V, .., u™ be a basis of U. For the matrix
@t

)

w,' uy

: : [ N Vis e V€11, 0},
2 (r

uvm uvm " ee uvm

let us introduce the abbreviation

u(l) oo g\
Vl P vm :
' At one point we need to deal with these cases, but this will not cause any difficulties.
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The values

(8% )
u e U
p(Vl, Vz, esey v,)—det

], Vi, Ve {1, ., n},

Vo oeee ¥

r

are known as the Pliicker~Grafmann coordinates of U. Since

(1) (r)
u . u
rank [ ] =r,

1 -+ n

not all the coordinates vanish. Regarded as homogeneous coordinates they
are determined by the subspace U, indeed, they are independent of the
particular choice of the basis. Conversely, they determine the subspace
uniquely. Furthermore, they satisfy the relations

(P) if o is a permutation of the index set {v,, .., v,} in {1, .., n}, then
p(a(vl), sty O'(V,)) = Sgn g- p(vls eeey V,),
(R) for all choices of 2r indices y,, .., f, _y, Vi, o ¥,y y in {1, .., 0},

r+1

Z (—l)p+1p(ﬂl, s M 15 Vp)p(vls Rt ] Vp-]’ Vp+l’ ] vr+l)=0-
=1

These are known as the Pliicker relations, see, e.g., B. L. van der Waerden
[23].

It is further known that the vectors @'?), p=1,..,r, defined by
G = p(Vi, s Vy 15 JsVouts o V) j=1,.,n, form a basis of U, where
{vi, .., v,} is chosen in such a way that p(v,, .., v,) #0.

Let p(V, 415 V) Vegis o Va€ {1, ., n}, be the Pliicker-GraBmann
coordinates of the orthogonal complement U* of U. If (v, .., v,) denotes
the permutation j— v, of the set {1,.., n}, then the Plicker-GraBmann
coordinates of U and U*, respectively, are related by the equation

p-L(vr+1» sy vn)= Sgn<vla RH vn> 'p(VI, ooy vr)'

Henceforth U will always be an r-dimensional subspace of R”,
1<r<n—1,and {u'", ., 4"} will form a basis of U. Let us introduce the
classes of index sets I,,, 0<m<r+1,

Ii:={(v):ve{l,.,n}, plv, Ny=0forall Nc {1, .., n}, #N=r—1};

L={(vi,va):vy,vae {1, ,nl, v, # vy, (vy), (W) €14, p(vy, vy, N)=0

foral N< {1, ..,n}, #N=r—2}.
In general, for 2<m<r,
L= {(Vyy s Vi) 1 V15 ey Vi€ {1, .., ), pairwise distinct,
p(Vyy ey Vo, NY=0forall Nc {1, .., n},
#N=r—m,and forall (v}, .., v,)el,,
L<pu<m, (v, e Vi} & (Vi Vi b 15
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while
Loy i={(visen Vo) Ve v €41, 0},
pairwise distinct and for all
(vi, oV el I<us<r, {(vi, v} & {vis v, )
Finally,
Iy:={v:ve{l, ., n},

forall (v, ., vp)El, l<m<r+ 1, vé {vy, ., v} )
For the notation of an index set we use round brackets instead of braces
although the order of the elements is of no importance.
In his paper [2] on subspaces of /7, F. Bohnenblust introduced the first

two classes for a subspace U of /7, | < p<<oo, p#2, in order to determine
those subspaces which are the range of a contractive projection.

THEOREM 1. Let U be an r-dimensional subspace of R” with the basis
uV, . u" and let 1 <m<r+ 1< n The following conditions on an index
set (v, .., V,,,) are equivalent:

(1) (Vi) e v,,) belongs to 1,,;

dD 0
vl v vm

is of rank m—1 and any m— 1 rows are linearly independent;

(it) The matrix

(iit) pu(vys . v,,) =0 for any m-dimensional subspace U' of U and
Sfor all pairwise disjoint indices v\, .., V. (€{V|, .., Vm} there exists an
(m — 1)-dimensional subspace U" of U satisfying p (v}, .., v, _ 1) #0.

(iv) dim U*nspan {e,,..,e, } =1 and if ve U* Nnspan {e,,, .., e, }\
{0} then v, #0 for all ve {v,, .., v,,}.

Each index set determines a minimal collection of linearly dependent row
vectors of the matrix
L Ets
1 -« n|

For (v, .., v, )el,, | <m<r+1, the theorem guarantees the existence of
r+1—m indices v, ,,.,v,,; in {1,.,n} such that p(v,,..,v,_,,
Varts o Vo) #0, 1 <p<m. Let (v, .., v,) be a permutation of {1, .., n}
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with the first # + 1 indices determined as above, and let e =sgn{v, ..., v, >.
Then the vector v in Theorem 1(iv) is determined as follows:
Vi<u<m vv“=pl(v#, Ve e Yy
=SENV s Vo 15 Vi1 s Vet Vs Veg 25 oy Vo )
PV e Vs Va1 s Veg 1)
=£& .(_1)r+1~y 'p(vla ey vp—l’ v;t+1’ e vr+l)'
Proof. (i)=(i1). From the very definition of the index sets it follows
that (i) is equivalent to
(i)’ For each p-tuple of indices {vi,..v,}c{v;,.,v,}, 1<pu<
m—1, there is an (r—pu)-tuple of indices N’ in {I,.,n} such that
p(Vy, e vy, N'Y#£0,and p(vy, .., v,,, Ny=0forall Nc {1, .. n}, #N=r—m.
Let us assume that (i)’ holds, and let g =m — 1. Then the row vectors of

the matrix
u‘” . u(")
v’] e v;" g
are linearly independent; i.e.,
o a0
m—1=rank| |, , <rank <m.
vl e v vl .. ‘V

Assume,

Since dim U =r, there exist r —m further indices v,,,, .., v, in {1, .., #}
such that p(v,, .. V., V4. v, ) #0 which contradicts the fact that
p(vis v, N)=0foral N {1, .., n}, #N=r—m.

(ii)= (iii). Let U’ be an m-dimensional subspace of U; without loss
of generality we may assume that the first m basis vectors ", .., u"™ of U
form a basis of U’. From the fact that

(1) (r)
u .. n u
rank|: ]-——m—l

vl N vm

dD Lt
rank <m-—1;

v] s yV

it follows that

n

i€, pu (v, . v,)=0. On the other hand, for each subset {v}, .., v, _,} <
{v(, .., v,,} there exist basis vectors u*", ..., u”~~" of U such that

(p1) (Pm-1)

u .. u

det| | , #0;
vl e vm7l

ie, the subspace U”=span{u”", .., u¥ -V} has dimension m—1 and
satisfies the condition p,.. (v}, ..., v, _ ) #0.



330 M. FINZEL

(iii) = (iv). As seen above, condition (iii) implies that there are
(m — 1) basis vectors #'°”, .., u'»-1 of U such that

(o) (Pm-1)
u P u
rank[ :l=m—1.

v] e vm

Consequently, there is, up to a scalar multiple, a unique vector ve R™,
v # 0, which is perpendicular to all the column vectors of the matrix above.
Extending v to R” by setting v, =0 for ve {1, ., n}\{v,, .., v,.}, we have

U* nspan {e,, .., e, | =span {v}.

It remains to show that v, #0 for all 1 <u<m. Assume v, =0. Then the
vector (v,,, .., v, )" is perpendicular to each of the column vectors of the

matrix
[u(li u(r):l
‘)2 PEY vl‘ﬂ )
But since the rank of the matrix above is equal to m — 1, all the coefficients
vy, I <p<m, of v have to vanish.

(iv)=(i). The vector (v,,, .., v,,)" #0 is perpendicular to each of the
column vectors of the matrix

a0
l: LT, :I
Thus the rank of this matrix is not greater than m — 1; i.e., the Pliicker—
GralBBmann coordinates satisfy the condition p(v,, .., v,,, N)=0 for each
choice of an (r —m)-tuple of indices N {1, .., n}. Suppose {v}, .., v,}c
{Vis e V) and (v4, ., v, )el,, 1<u<m—1. Then there exists a vector
weR”, w0, such that w,=0 for all indices ve {1,..,n}\{v}, .., v,} and
(wvl, ey W, )T is perpendlcular to each of the column vectors of the matrix

given above In particular, w¢span {v}, but this is a contradiction to
we U* nspan{e,, .., e, } =span {v}. It follows that

' (n
“ e u
rank [ , :l = U,
vl . v/‘
and consequently, we can complete the u row vectors of this matrix with

r — u further row vectors of the matrix ["“) “"’] to form a basis of R";
that is, there is an (r— u)-tuple of indices N<{l,..,n} such that

vy, ., v, N)#0. |

If an index v belongs to the class I, then the vth row vector of U is
linearly independent of each collection of the remaining row vectors of U;
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i.e., the vth coordinate of every vector in U+ vanishes. Thus the vector e,
belongs to U, i.e., there is a decomposition of U as follows:

U=U@R*"

where U’ <« R"~ *% denotes the (r — #1,)-dimensional orthogonal projec-
tion of U onto span {e,:ve{l,.,n}\Iy}.

There is a geometric interpretation of Theorem 1(iv). Let v be the vector
in U* associated with an index set (v,,..,v,,) in I,, 1<m<r+1,—we
assume v to be normalized by the /'-norm; ie., v}, =2r_ilv, =1 Let
[=%r+! %I, and let us enumerate the vectors v from 1 to L If 5!(0)
denotes the closed unit ball of /!, and if Q := U* n b} (0), then Q is a com-
pact convex symmetric polytope. Indeed, we have the following theorem.

THEOREM 2. We have

extQ={+v', .., +v'};

ie., the normalized vectors v in U* determined by the classification of
{1, ..., n} with respect to U are the extremal points of Q.

Proof. Let v be the normalized vector in U+ associated with the index
set (vi, .., v,)in 1, 1 <m<r+ 1. Assume v is not extremal in Q; i.e., there
are vectors w and w' in Q and 0 <t < 1 such that v=tw+ (1 —1)w’". Since

t=lol, =3 loJ)=3 ltw,+ (1 — 1) w|
Y tiw+) (1—1) |w)

Stiwlh + (=) Iw'l <1,

where the sum is taken over the index set {v,..,v,}, it follows that w
as well as w’ have support on this index set; ie, w,weU*n
span {e,, .., e, }. But then by Theorem I(iv) the equations w=Aiv and
w’ = J'v with |4] =|A'| =1 are true. It follows trivially that A=41"=1, and
w=w"=v. Conversely, let v be an extremal point of Q, and let {v,, .., v,,}
be its support on {1, .., n}, 1 <m<n We claim that m<r+1 and that

U* nspan {e,,, .., e, }=span {v}.

Assume there isa we U* nspan {e,, .., e, }, normalized and linearly inde-
pendent of v. Because of linearity we may assume that both v and w belong
to the (m — 1)-dimensional closed face

fperriy= T psmvenpzomd ¥ g1l
}

ve {v), .., vy} VE {V], s Vi
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of the unit ball of /}; where v even belongs to its relative interior. But then
v can never be an extremal point of Q. Since U' nspan {e,,...,e, } =
span {v}, clearly, m is less than or equal to r +1. |

The aim is to describe the approximation behavior of U in /7; ie., the
behavior of the metric projection P, on /*, as a set-valued mapping of R”
into U, as well as the behavior of the best approximants P, (x) for a single
element xe R”. The basic tool will be the classification of the index set
{1,..,n} by means of the Plicker-GraBmann coordinates. Theorem 1
gives various equivalent characterizations of those index sets (v, ..., v,,)
which belong to /,,, | <m<r+ 1. From the point of view of approxima-
tion the characterization (iv) is the most useful one. It is related to a
theorem of T.J. Rivlin and H. S. Shapiro on the characterization of the
elements of best approximation to a point in /7. Theorem 2, on the other
hand, allows us to rewrite the problem of best approximation of a point as
a problem in linear optimization over the compact convex polytope Q
in/).

2. THE METRIC PROJECTION

Let U be an r-dimensional subspace of R”, 1<r<n-—1, and let
P, : 177 > U denote the metric projection of 1° onto U. By definition, for
all xeR",

Pu(x)={uelU:|x—ul,=dist (x; U)},

where dist: /) — R is the distance function on [). P, is a set-valued
mapping and P,(x) is compact and convex for each x in R". Indeed,
P (x)=Unb,(x), where b, (x) is the closed ball with center at x and of
radius d=dist (x; U). Moreover, for all xeR", for all ue U, and for all
ieR

P x+u)=P,(x)+u and P, (Ax)= AP, (x).

Because of these properties P, is said to be quasi-linear.

It is further known that P, is upper as well as lower semi-continuous,
see e.g., [22, pp. 58, 62]. While the first property is an immediate conse-
quence of the finite dimensional setting, the lower s.c. was first observed by
A. L. Brown [4] in 1964; we shall come back to this fact in Section 4.

If P, (x) is single-valued for each xeR", U is called a Chebyshev sub-
space. It is well-known that U is Chebyshev exactly when each vector ue U,
#0, vanishes at at most »r—1 indices (Haar’s theorem). Clearly, this is
satisfied exactly when for all r-tuples of indices (v, .., v,)

)y ... (r)
p(V[, eey v,):det [u “ ];EO’
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ie., if and only if all the classes I, .., I, are empty (and I,,, contains
exactly all possible (r+ 1)-tuples of {l,..,n}). More generally, following
G. S. Rubinstein {20] a linear subspace U of /° has Chebyshev rank less
than or equal to r, 0<r<r, if for all choices of (r— r)-tuples of indices
(viy s Voo of {1, .., n}

(0 (r)
u e u

rank =r—t
vl DS v"*l

This is true exactly when the classes 7, ..., I,_, are empty, see also [24].
Let us denote by

UP={xeR":0ePy(x)}
the metric complement of U in [ and let us set
U= U S,(0),

the intersection of U'® with the unit sphere S, (0) in / . The latter set can
be identified with the Blaschke boundary of U on S,(0). (W. Blaschke
introduced the notation Schattengrenze of S,(0) w.r.t. U.) For this reason
the metric complement is also called the Blaschke cone of U in I7;
obviously, U™ is a cone with vertex at the origin.

Our first aim is to characterize U by use of the classification of the
index set {1,..,n} wrt U To do this, let us introduce the following
notation. For 1 <m < n, let

S:=S(e, e,, . E,,€,)

={xe §,(0) ix, =g, for l<pu<m, and [x;[ <1 otherwise }

denote a relatively open face of S (0) of dimension n —m, where v, .., v,
are pairwise disjoint indices of {1, .., n} and &, ==*1 Clearly, the faces are
pairwise disjoint and S, (0) is equal to their union; moreover, a vector x in
S,(0) uniquely determines the face S to which it belongs.

Let v in R”, #0, be a vector with support {v,, .., v,,}. We shall use the
following abbreviations:

supp v = {vy, .., v,,.} and S,=S(sgnv,e,,.,sgnv, e,)

Consider a face S of §,(0) and an xe S such that x belongs to its
Schattengrenze with respect to U, then S is contained in U'”, see the proof
below. That is why we shall loosely call S a face of U®". The face S of U'”
is said to be maximal, if it is not contained in the closure of a face of U{"
of higher dimension.

640/76/3-4
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THEOREM 3. Let U be an r-dimensional subspace of R” with basis vectors
uV . u'D, gnd let 1,,, 1 <m<r+1, be the classification of the index set
{1, ,n} wrt. U. If (v{, .., v,y)€1,, and if v is the associated vector in U™,
then +8, are maximal faces of U\®. And all maximal faces of U® are
determined this way, moreover,

vP= U S.,

veext Q

where _Fv is the closure of a maximal face and Q denotes the polytope
Ut nbl(0)

Proof. Let xeS=S(¢, e, .. ¢,,€, ) belong to U". By the Variational
Lemma of Rivlin and Shapiro [18, Theorem 1], there exist weights p, >0,
2 py, =1, such that

Py8y, =0, Yuel.

1

™3

“

Within this setting, the lemma has probably older roots than the theorem
referred to above, but it seems to be difficult to point out a precise
reference. Since the equation above does not depend on the components x,
of x, ve {1, .., n}\{v|, ., V,n}, €ach x’€ S belongs to U'", Also, if Sis a
maximal face of U!”, then the weights have to be strictly positive on
{viy s Vi -

Let the vector v be defined by v=p, &, -, + --- +p, &, -e,. Obviously,
ve U* and |v|, = 1. We claim

span {v} =U* nspan {e, :vesupp v},

or (v, .., v,,) €L, by Theorem 1(iv). For m =1 there is nothing to prove.
Assume there is a second vector w in U* nspan {e,, .., e, }, linearly inde-
pendent of v. A linear combination of w and v will lead to a new vector w’
which vanishes in at least one index of {v,,.., v, }; i.c, suppw’ is a real
subset of supp v. But then S, is a face in §,(0) which contains S in its
closure, a contradiction to the maximality of S.

Conversely, the vector veext Q satisfies the equation,

0= Y ou= ) sgnvlv]u, forall ueU.
v ESUpp v vESsupp v
From the Variational Lemma, it follows again that the face S, belongs to

the Blaschke boundary of U on S,(0). Clearly, since the support of v is
minimal, S, has to be maximal. ||
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Let S, be a maximal open face of U{® and let x be a point of S,. Setting
T =span {e,:ve {1, .., n}\supp v}, it is not difficult to see that

dim P (x)=dim (T nU)=r+1—m.

Indeed, while the first statement follows from the fact that S, is maximal
and open, the second one follows because (T + U)* =T+ n U* =span {v}
and, consequently n—1=dim (T+ U)=dim T+ dim U—dim (T nU)=
n—m+r—dim (T n U).

If U has Chebysheyv rank <1, 0<r<r, then m>=r—t+1, or
dim P, (x) <t Conversely, if for all xe R"dim P, (x) <, then the classes
I,,..,1._, are empty, reproving G.S. Rubinstein’s results [20] in the
discrete setting.

Let us conclude the section with two simple examples:

(1) Let U be a hyperplane in R", and let v be the up to a multi-
plicative factor uniquely defined normal vector of U. There is just one index
tuple, say (v, ..., v,,)€1,,, | £m<n, and an index v belongs to the tuple if
and only if vesupp v. Clearly, I, is the complement of {v , .., v,} relative
to {1,..,n} and U can be decomposed into

U=U@R*",

where U’'=Unspan {e,, .., e, }. In span {e,, .., e, }, considered as an
/> in its own right, U’ is a Chebyshev hyperplane.

(2) Let U be an one-dimensional subspace in R”, say U =span {u},
u 0. There is the following classification:

I,={(v):u,=0}, L={(v,pu)iu, u,#0}, and I,

where I, is not empty exactly when U=span {e,} for some index
ve{l,..,n}.

3. THE CHARACTERISTIC INDEX SET

In this section we study the set of best approximations in U of an
individual vector x in /.
The following duality relation

Vxelr, dist(x; U) :=min |x —u| , =max {x,v) *)
wue UV veQ
is well-known in functional analysis. R. C. Buck [5] attributes it to

M. G. Krein and to S. Banach. The following statement is an immediate
consequence of Theorem 2.
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THEOREM 4. For each xel”

dist(x; U) = max ! {x,v).
+u

ve l+d), ..,
In almost all books on optimization (and approximation) one will find the

discrete Chebyshev approximation as an application of linear program-
ming; in particular, one will find the statement that

Vxelr,  dist(x;U)=max {(x,v), where Q=U*nb}(0),
veQ

see for example that of L. Collatz and W. Wetterling [7, Sect. 16]. Clearly,
the maximum of the linear form {x, v)> over Q is assumed at an extremal
point of Q. The point here is that Theorem 1 gives a way of determining
the extremal points of @ explicitly. On the other hand, the simplex method
does not make an explicit use of all the extremal points to calculate the
maximum.

In the following we shall assume without loss of generality that for the
given subspace U the class I, is empty. If xe R"\ U, and if

dist(x; Uy=d=(x,v'"> = ... ={x, 0¥y > {x, 07D,

v, oW eextQ and v eext Q\{v'", .., v*}, then, choosing any
ue P, (x), the equations

d=<{x, 0"y ={x—u vy <|x—ul, W™, =|x—ul,, 1<k,
imply that for each 1 <k, A<k and for all 1 <v<n
v ph >0,

In particular, the extremal vectors v'"), .., v'*’ define a face of bd Q; in
other words, their arithmetical mean determines a vector v in the boundary
of O, known as the center of gravity of the face. It follows that

Vue P,(x)and Vvesupp v, u,+d-sgnov,=x;
ie., all elements of best approximation of x in U are equal at the
indices v in supp v and the error x, — u, is maximal. Following J. Descloux,
we call

C.:={ve{l,.,n}:|x,—u,|=dist(x; U)Vue P (x)}

the characteristic index set of x with respect to U, and denote by C. its
complement in {1, .., n}. Clearly, supp v <= C,. Moreover, we have
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THEOREM 5. Let xelX\U, and let dist(x; U)=<(x, 0"y = ... =
vy =(x, vd> vy, for v, v%eextQ and v eext Q\
{v™, ., v0}, and for v="3F%_ vk, then

k=1
k
C.= | suppv'™ =suppv.

K=1
The theorem is crucial for a thorough investigation of the metric
projection. It goes back to J. Descloux and is stated and proved in his
doctoral thesis [8]. We shall give a proof by making use of a result of

R. T. Rockafellar [19, Sect. 22, Theorem 22.6] on linear inequalities:

THEOREM. Let L be a subspace of R, and let J,, ..., J be real intervals.
Then one and only one of the following alternatives holds:

(a) There exists a vector z=({,, ..., () € L such that
Liedy, v invedy;
(b) There exists a vector z* = ({¥, .., {X)e L+ such that
R+ -+ (KIn>0.

If alternative (b) holds, z* can actually be chosen to be an elementary vector
of L*.

The intervals are considered to be nonempty; no further restrictions are
assumed. R. T, Rockafellar defines a vector of a subspace to be elementary
if its support is minimal. In our notation a vector in L' is elementary if it
is up to normalization equal to an extremal vector of L+ n5}(0). Thus a
classification of the index set {1, .., N} w.r.t. L determines all elementary
vectors in L™, as proved in Theorem 2.

Proof of Theorem 5. 1Tt remains to prove C,csupp v. It follows from
the convexity of P, (x) that for any index ve C, and for all v € P (x) either
x, —u,=dist (x; U) or = —dist (x; U).

Let us assume without loss of generality that xe U'\”, and let v,e C,.
Then x,,=1 or = —1. We restrict ourselves further to x, = 1. Hence, for
all elements u of best approximation of x u, =0 holds. Set N =r 4 n. With
respect to the equation u+(d—x)=0 in R”, 6 being the error, the
following system {A) has a solution, while system (B) does not.

¥ aul?+oa,,,=0, ve{l, ., n};
p=1

(A) a,eR=:J,, pefl, ., rk
ar+v€{0}=:‘]r+v’ V="V,

o el—x,—1, —x,+1]=:J,,., ve {l, ., ni\{vo}.
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S aul?+a,,,=0, ve{l, ., n};
p=1

(B) a,eR=:J,, pe{l, ., r};
ar+ve[—270)=:‘]r+v7 V=Vg,

o, el—x,~1, —x,+1]=:J,,,, ve {1, .. n}\{vo}.

We let L be the r-dimensional subspace of R” the orthogonal complement
L+ of which is spanned by the column vectors of the matrix

Tu) e uO]
(r) (r)
uy un Nxn
e RY ™"
1 0
Lo 1

Since system (B) has no solution, by R. T. Rockafellar’s alternative there
exists a vector z* = ({}, ..., {¥)e L such that

ehzy =00+ - + ¥ V>0

for each vector z=({,, ..., {y), {1 €d), s {nETN.

Let us look at the vector z* more closely. At first we remark that
¥, 70; the coefficient being equal to zero is in contradiction to the
solvability of system (A). Moreover, since the coefficients ¢, .., {, of z are

unrestricted, the coefficients (¥, ..., { ¥ vanish. Hence, we can rewrite z* as
(*=0, p=1,2,..,r; X .=, v=1,2,..,n,

where v is a vector in U*. We choose |v], =1. If v,=0 for all v#v,, then
(¥, z)=0v,(>0, =2<({<0; ie, v, =—1, and v= —e, is an extremal
point of Q; as before, Q being the closed convex polytope U* b} (0).
Hence {x, —v) =1, and consequently v, € supp v.

Assume pe C\{vo}. As seen above, sgnv, = —1. Setting {,,,=0 for
v#vg, i, and setting {, , , in turn equal to —x,, —x,+1, and —x,— 1,
we obtain

—x,v,+ v, >0 and (-x,+x1)v,+{v,, >0, —-2<({<0.

By assumption, |x,| < 1. For the three inequalities to be true, we have to
have |x,|=1 and sgnv,= —x,. Hence (x, —v)=1.
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Let —v be the convex combination of the extremal vectors v‘?, ..., v**! of
Q’ say —v= £= 1 ﬁxv(x)9 ﬁli ey Bk>0’ Zi=1 ﬂx;— I, then

k k
1=(x, —v>= 3 B.(xv™)< ) B=1L

k=1 k=1

Consequently, (x, v™')=1for 1 <k <k, and voesupp v =), . <« supp v

The proof uses methods of linear optimization. R.T. Rockafellar’s
theorem allows one to consider a single index; the “traditional” methods in
approximation theory such as the Kolmogorov criterion, and its deriva-
tion, the Variational Lemma, seem not to be sufficiently sensitive to yield
Theorem 5.

J. Descloux in his proof makes use of a theorem of H. Weyl on the
solutions of homogeneous linear inequalities. He calls the index sets
of the classification cadres and defines them via characterization (ii) of
Theorem 1.

In the fifties S. I. Zuhovickii [24] investigated the approximation of real-
valued functions in the sense of P. L. Chebyshev on compact point sets and
particularly on minimal subsets of these compacta, which are index sets in
our notation. His definition, however, is still tied to a vector xe R"\U.

J. R. Rice in his famous AMS Bulletin note [16] on the strict
approximation denotes these index sets critical points sets of best
approximation to x; see also [17, Chap. 12-7]. He uses the phrase set of
critical point sets denoting C,. Rice’s approach, however, is more difficult
to follow than Descloux’s one.

In 1961, T. J. Rivlin and H. Shapiro [18] introduced what they called
an extremal signature (on a compact Hausdorff space T), see also
H. Shapiro [21, Chap. 2.6]. B. Brosowski [3] picked up their notion and,
more recently, W. Li [13] again; both define primitive extremal signatures.
Using our notation a primitive extremal signature ¢ of U is a mapping
from {1,..,n} to {—1,0, 1} which corresponds to an extremal vector v in
U*;ie., o(v)=sgnv,, for all ve {1, .., n}. Their approach is closer to that
of J. R. Rice.

F. Bohnenblust’s paper [2] on Subspaces of I, , Spaces and his use of
Pliicker-GraBmann coordinates of the linear subspace U in R" was the
starting point of my investigation on discrete linear Chebyshev approxima-
tion. When 1 saw the connections between my considerations and the
results of Zuhovickii, Rice, Rivlin and Shapiro, Descloux, and Brosowski,
which date back more than 30 years, I was at first puzzled, later they
strengthened my confidence. The approach via Pliicker-GraBmann coor-
dinates does exceed theirs and does lead to new results as we proved so far
and will continue to prove.
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4. DECOMPOSITION OF [ °\U

As before we assume that the index class I, is empty. Let us choose a
face of bd Q with extremal points v'", ..., v*), which is uniquely determined
by their arithmetical mean v=3Y*_, v"“/k and which will henceforth be
denoted by face,, and let us define

K, ={xeR":dist{x; U)={x, 0> = ... = (x, 0* > =(x, 0> = (x, 0>
Vo' eext Q\{v", ., v} ),
and
K :=cone {S,}
={xeU®:x,=d -sgnv,,veC,and |x,| <d,veC,,d>0}.

For all xe K, its characteristic index set C, is equal to supp v, for this
reason we shall write C, whenever we are discussing the approximation
behavior of U on the cone. Since Q has only finitely many faces, there are
finitely many characteristic index sets, hence finitely many cones K and
K™, respectively.

By the definition of these cones and by use of Theorem 5, we can extend
the statement of Theorem 3.

THEOREM 6. By use of the notation given above, the cones K, face, being
a face of bd Q, are convex, relatively open, and pairwise disjoint. They satisfy
the relation

K.=K®9+U

and decompose R"\U.
In particular, for each veext Q, K, is an open convex cone and \J ¢ oy o K.
is dense in R".

It follows that for all xe K,
(x+U)n KO # g

ie., there exists an element of best approximation # of x such that
|x,—u,| <d, ve C,, where d is the distance of x from U. Furthermore, for
all xe K,

x—Pu(x)=(x+U)n K@= (x+U)n KO,

Moreover, the lower semi-continuity of P, follows easily. To indicate the
proof, we may restrict ourselves to x® e K© and may select the origin as
element of best approximation.
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The vector v determines a subspace
U,={uelU:u,=0,veC,}

of U of dimension

w) gy
r :=r—rank[ ];
C,

let us assume that the first »’ basis vectors of U, u'", .., ¥, are a basis
of U,.

Choose a sequence {x*'}, converging to x® as k — o0, and choose any
sequence {u'®} in U, where «*'=3"_ «% belongs to P, (x*).
Because of the upper semi-continuity of P, u*)—0 as k - oc for ve C,
and since

S At ,
rank c =r—r,

v

the coefficients «'*) |, ..., a*) converge to zero as k — oo as well.

We claim, that for & large, the element

r

Gk) k), (p)

u = Z (lp u
p=r+1

belongs to P, (x'*"). Indeed, for ve C,
g (%) v
~(k k
|t — a0 = |x (9 —ul?| < dy,

where d, and d, are the distances of x*> and x'© from U, respectively,
while for ve C;

e =@ < x P+ e =P+ 1,

the last two terms on the right-hand side converge to zero as k — o0, and
the first one is strictly less than d,. Since d, — d, as k — o0, the left-hand
side is strictly less than d, for k large.

Selecting for xe R"\U the element in P, (x) which has minimal
Euclidean norm, one obtains a continuous selection of the metric projec-
tion which possesses the property called Nulleigenschaft; ie., for xe U'®
the origin is selected. It was G. Niirnberger { 15] who pointed out that the
existence of a continuous selection with Nulleigenschaft is sufficient for
lower semi-continuity of the set-valued metric projection. Two years later
H. Kriiger [12] proved the necessity for complete subspaces.
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Further selections are easy to construct: Taking the center of P, (x) w.r.t.
the Euclidean norm, or the center of gravity of P, (x), by continuity of the
metric projection one obtains a continuous selection, respectively; see,

eg, [11].

5. THE METRIC PROJECTION ONTO A CHEBYSHEV SUBSPACE

In this case I, as well as all index classes /,,, 0 <m <r, are empty, while
I, , includes all possible (r + 1)-tuples of pairwise disjoint indices. Let us
take face, of bdQ and let K, be the corresponding relatively open convex
cone in R”\U, as defined in the previous section.

THEOREM 7. On K, the metric projection is linear.

Proof. Let x and x belong to K, let # and # be their elements of best
approximation in U with distances d and d, respectively, and let x/® and

%® be their respective projections in K. On C,={v, .., v, }
xO=dsgnv, and x©=dsgnuv,,

while
xO<d and |#®|<d onC,.

Clearly x + Y€ K,, x© + % belongs to K'”, and by the uniqueness of the
representation,

X+ F=(xO 4+ p (w+d)=(x+ 54+ Py(x+ %)
It follows that
Py(x+%)=u+a and dist(x+%;U)=d+4d,

proving additivity. Since the metric projection is homogeneous, we have
trivially

P, (ix)=1u and dist{ix; U) =|4] dist (x; U), ieR.
Clearly, these arguments carry over to K,=K®'+ U. |

Because of uniqueness, Py, is continuous, and because of P, being linear
on the closed convex cones K,, veext Q, we reproved the following
corollary which goes back to A. K. Cline 6] and M. Bartelt [1].

COROLLARY. P, is a globally Lipschitz-continuous projection of R”"
onto U.
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For a cone K,, veext @ with support {v,,..,v,,}, we can explicitly

determine the metric projection. Indeed, for x € K, the system of linear
equations

r
Y a,ul” +8,=x,, 1<v<n,
p=1

subject to the constrains
d,=d-sgnv,, VveC,, and 19,] <d, VveC,,

is uniquely solvable. Choosing an index ve C, and considering the sub-
system determined by the indices v, ..., v, . ; and v, the column vectors of
the corresponding coefficient matrix

(1) )
Uy Uy sgn vy,
_ . . . (r+2)x(r+1}
H= wl oowD senp R
Vel Yral Vit
ooy 0

span a hyperplane in R"*% A non-zero vector perpendicular to H can be
determined by use of the Pliicker~-GraBmann coordinates of H, its
coefficients are given by

r+1

pH(vl’ ey vr+l)= Z (—1)r+1+“p(v15 seey vuul’ vy-}-h ey V,,+1)'Sgn UV“,
n=1

for j=r+2, while for 1 <j<r+1,

pH(vl’ s Vi vj+ls s Voyts V)
7

Jj—1
— Z (_1)r+l+u

u=1
POV s Vi1 Vit e Vi1 Vi 1o e Vg1, V) SEDLD,,

r+1

+ Z (_1)r+u

p=j+1

'p(vl, ey vj—h vj+l’ (i3 v;(—ls vu+l’ ey vr+l’ V)'Sgn U‘,".

For xe K,, the element of best approximation ' of x in U is then given
by

u="~P, . x,
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where the projection matrix P, = (n!))e R"*" is determined by

6\'\1# —Ssgnv, - U‘,“, Vu S Cv’ Ve Cl,,
! o PE Y e Y Vs s Vs V)
n =< (=) oA e e T v,eC,,veC,,
" PuVis Vi)
0, otherwise,

d,, being the Kronecker symbol.

6. THE STRICT APPROXIMATION

Here we want to extend the result of the previous section to the non-
Chebyshev case. The role of the best approximation which in the
Chebyshev case is a continuous point-valued projection of R” onto U, is
played by the strict approximation, the “best” of the best approximation.
The concept of strict approximation, i.e., of selecting for a vector in R” an
element of best approximation such that the error is minimal in each
component, was introduced by J. R. Rice [16]. We follow J. Descloux’s
construction [9] which differs somewhat from Rice’s one and which in our
notation reads as follows:

Let I, .., I, be the classification of the index set {1, ..,n} w.rt. U.

Let xe R"\U. If v is an index belonging to I,, we define the v th com-
ponent of its strict approximation to be equal to x,. So we may as well
assume that I, = (7.

It follows from Theorem 6 that there exists a face of bd Q, say face,, such
that x belongs to K,. As in Section 4, let U, denote the linear subspace of
U defined by

U={uelU:u,=0,veC,};

and let us recall that U, has dimension

’ WLy
¢ =r—rank .
C,

If =0, then x has a unique element of best approximation which we
define to be its strict approximation, too.

Let 0 <r’(<r). We may select a basis of U such that the first * vectors
', u"), form a basis of U,. With this convention we obtain for each
u=3,_, 2,u'”’ e P, (x) the representation

,
Y aulP+dsgnu,=x,, veC,,

p=r+1
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where 4 is the distance and where the coefficients a,, r'+1<p<r, are
uniquely determined, while

r r
Y ow P+ Y au”+8,=x,, veC,.
p=1 p=r+1
For the error 6 = x —u, |8, <d on C,, there exists, however, an element of
best approximation of x for which |8,| <d on C; holds true.

Next we restrict x to the index set C, and write x’, and similarly,
we write U’'=span {«'", ., «'"’} for the restriction of U,. In case

x' =¥ _,, o,u'" belongs to U'; ie.,

r r
Y qu+ ) aquP=x,, veC,
p=1 p=r+1

for some af, ..., a,-, then the strict approximation of x is defined by

w=y ou?+ Y  axul;
p=1 p=r+1
again, we are done. Otherwise, let I}, ..., I ., be the classification of the
index set C, with respect to U'. I has to be empty, since an index in [ will
also belong to I, which is assumed to be empty. Thus U’ does not
degenerate to {0} and also to R", n’'= #C,. But then there exists a face
of bdQ’, say face,., such that x'—37 _ ., a,u'*® belongs to K. Let

Uy={uwel u,=0,veC,},

and let w'", .., w'"") be its basis. For each w' e Py, (x' =X _, . a,u'"")
r r
Y o u+ Y au?+d sgnvi=x,, veC,,
p=r"+1 p=r+1

where the distance d’ < d, and where the coefficients o, r"+ 1< p <r', are
again uniquely determined.

If r"=0, we are done; otherwise we continue the process. After s steps,
s < n—r, one obtains a uniquely defined element »* in P, (x), the so-called
strict approximation of x.

In other words, there exist a sequence of v-vectors, say v', .., v¥, a corre-
sponding sequence of pairwise disjoint characteristic sets C', .., C*, a
sequence of subspaces (U=)U"'> -.. o U* of dimensions r’, ..., r’, respec-

tively, and a sequence of distances (d=) d,> --- >d, >0, such that &’ is
uniquely determined and the error x — u® satisfies

o,=d,sgnv’ for veC’ 1<0o<s,
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or, for some 1 <s'<s—1

5= d,sgn v forveC? 1 <o <y,
0 for v otherwise;

to simplify notation we write C“ instead of C,. Let us, in addition, write
C**! for the indices of {1, .., n} not belonging to any C’, 1< <s. Take
such a sequence of v-vectors, say vl, .., v*, and the corresponding sequence
of characteristic sets, C', ..., C°, and C**!, the convex cones

KD . :={xeR":thereexists d, > --- >d,>0such that
x,=d,sgnvforallveC’ and I <o <s,
and |x,| <d, forallve C°*'}

and, for 1 <s' <s—1,

LY . :={xeR":thereexistsd,> --- >d_ > 0such that
x,=d,sgnv’forallveC’,and 1 <o <y,
and x, =0 otherwise }

belong to the metric complement U® of U and the origin is the strict
approximation to each of its elements. Clearly, if for two different
sequences of v-vectors the first vectors pl---v% are equal, so are the
associated cones LY ., 1<s'<s—1.

It follows from above that for each x e R"\U there exists a sequence of
v-vectors, v', ..., v%, such that x belongs to

Ko =K% .+U or Ly . =LY% .+U, 1<s'<s—1.

Moreover, the finite family of K- and L-cones partitions R"\ U, i.e., for all
x € R"\U there exists a unique K-cone or L-cone such that

x=x"+u’

As in the Chebyshev case, the strict approximation is linear on each
cone. The strict approximation is known to be continuous, see, e.g.
[17, Sects. 12-7] or [8§,9]; it also follows almost immediately from the
considerations given above. Indeed, the following stronger statement holds
true, which was conjectured by W. Li [13] in 1990:

THEOREM 8. The strict approximation is globally Lipschitz continuous.

Let us consider a sequence of v-vectors, say v', ..., v°, and let X9, and
LY ., 1<s'<s—1, be the corresponding cones in U®. The cones are
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relatively open. In case all vectors v?, 1 <o <s, are extremal, the cone
K9 . is of dimension n—r, and, consequently,

Kp . w=KQ +U

is open in R”. Indeed, let C', .., C° be the associated sequence of charac-
teristic sets, and let m!, ..., m*® be their respective cardinality.

If v° is extremal, r '=r'—m°+1, 1<o<s, while 0=r—m*+1. It
follows that m' + --- + m*=r +s and that the cardinality of C**' is equal
to n—r—s. Hence the dimension of K , equals n—r. On the other
hand, if v° is a proper mean of extremal vectors, then r* —m°+ 1 <r°*+!,
1 <o <s, while r*—m*®+ 1 <0. Hence the dimension of K’ . is strictly
less than n — r. Clearly, the cones L,E??HLJV are of dimension strictly less than
n—r. The union of all cones K, _,;, where the v-vectors are all extremal,
form an open and dense subset of R”.

We actually do not need these considerations. Since there are only
finitely many relatively open cones which decompose R"\U, there have to
be open ones the union of which is dense. The argument given above
characterizes these open cones.

In some way the strict approximation is a “maximally” linear continuous
selection.

7. LINEAR SELECTION

It is a trivial fact that the metric projection onto an r-dimensional sub-
space U of />° admits a linear selection if and only if the metric complement
U contains a subspace of dimension n—r, see, e.g, [10] for a general
discussion of this matter as well as [14]. The classification of the index set
w.r.t. U characterizes U and as a consequence allows further charac-
terizations of linear selections.

THEOREM 9. The metric projection P admits a linear selection, exactly
when

(i) the union of the classes I, ..., 1, ., contains n—r pairwise disjoint
index sets, or

(ii) there exists a basis in the orthogonal complement of U the vectors
of which have pairwise disjoint supports.

The two characterizations are obviously equivalent, we only have to
prove one. The proof rests on the following lemma which is of some
interest in itself.

LEMMA. An s-dimensional subspace L of R", 1 <s<n, has a basis the
vectors of which attain their maximum norm on pairwise disjoint index sets.
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Proof. For s=1 and s = n there is nothing to prove.

At first we claim the existence of a relatively open face S of the unit
sphere S,(0) in /,° for which dim (L nS)=s— 1. Otherwise all relatively
open faces S of §,(0) satisfy dim (LN S)<s—1, and, consequently,
L~ S,(0) has dimension less than s — 1, which is a contradiction.

To construct the basis, let S' be a face in S,(0) with dim (S'nL)=
s—1; ie, S'n L contains linearly independent vectors w', w!+ p!, .,
w'+ y* ! which attain their maximum norm at the index set J, determined
by S'. The vectors y', .., y*~' belong to L and have their support on
{1, .., n}\J;; they determine an (s — 1)-dimensional subspace L, of L. We
repeat this process on L,, and so forth, and obtain a basis w', .., w*=! of
L with the desired property. |

Proof of Theorem 9. Let L be an (n — r)-dimensional subspace of U'?,
The lemma guarantees a basis of L the vectors of which attain their maxi-
mum norm at » — r pairwise disjoint index sets. By the characterization of
U, each of this /;°-normed basis vectors of L belongs to a face S, of U,
v being a vector in U with support in one of those n — r pairwise disjoint
index sets.

Obviously, each of these index sets contains a sub(index )set belonging to
one of the classes I, .., I, .

Conversely, let us denote the n — r disjoint index sets of the classification
by J,, ... J,_,, and let v*, .. 0"~ " be the corresponding extremal vectors
of Q. The vectors

w=3% sgnoe,, l<p<gn—r,
veld,
belong to U and define an (n — r)-dimensional subspace of U®. J

)

It follows from the proof that the vectors u‘V, ..., 1), w'V, ., w" =" form

a basis of R”; ie.,

r n—r
forall xeR"  x=3 o,u”+ % B,w?,  a,p,eR
p=1

p=1

Taking into account that the extremal vectors v'°), 1 < o < n—r, satisfy the
orthogonality relations

W u®y=0, 1<p<r,
and

WPy =46, 1<p<n—r,
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we obtain f, = (x, v'”’) for all 1 <p <n—r. The linear selection L, of Py,
determined by L=span {w'", ., w" "7} is given by

Ly(x)=x— ) <{x,v®)w?.
p=1
In case the index class 7 is empty, it follows from above that the linear
selection is uniquely determined and equal to the strict approximation.

Finally, in his paper on linear selections P.-K. Lin [14] proved that P,
admits a linear selection if and only if there exists a basis u'", ..., u""? of U
such that #suppu'”' <2, 1<p<r.

Indeed, his characterization is equivalent to the ones in Theorem 9:
If U' has the basis ‘'), ..., v'" " satisfying property (ii) of Theorem 9,
it is straightforward to construct a basis of U the vectors of which are
supported by at most two indices. The converse is proved similarly.
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