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The paper studies the approximation behavior of a linear subspace V in 1;:C'; i.e.,
in II\ln equipped with the maximum norm. As a principal tool the Pliicker
Gral3mann coordinates of V are used; they allow a classification of the index set
{I, ... , n} through which we determine the extremal points of the intersection of the
orthogonal complement Vi- of V and the closed I~-unit ball in II\ln, leading to the
dual problem. As a consequence, we describe the metric complement VIOl of V and
give a decomposition of W \ V into a finite set of pairwise disjoint convex cones on
which the metric projection Pu has some characteristic properties. In the
Chebyshev case, e.g., the metric projection is linear on these cones and, conse
quently, globally Lipschitz continuous. A refinement allows an analogous statement
for the strict approximation, proving a conjecture of Wu Li. Besides the strict
approximation, we are studying continuous selections of Pu with and without the
Nulleigenschaft, and characterize those subspaces V which admit a linear
selection. :,r: 1994 Academic Press, Inc.

1. A CLASSIFICATION BY PLUCKER-GRABMANN COORDINATES

Let us denote the Euclidean space IR n
, n EN, endowed with the maxi

mum norm 1·\ ex: by I;:='; its elements are considered to be column vectors;
in particular, e v denotes the vth standard basic vector. Let U be an
r-dimensional subspace of 1':, 0 < r = dim U ~ n - 1, to exclude the trivial
cases!, and let u(l), ..., u(r) be a basis of U. For the matrix

[ u'"
U(2)

U"]
v, v, VI

: , vI, ...,vmE{l, ... ,n},
u(l ) U(2) u(r)

Vm Vm Vm

let us introduce the abbreviation

[ At one point we need to deal with these cases, but this will not cause any difficulties.
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The values

[

U(l)

p(v" V2' ••• , vr)=det
v,

.•• u(r l ],

••• V
r

V I' ... , Vr E {I, ..., n },

are known as the PlUcker-GrajJmann coordinates of U. Since

[

u(1) .,. u fr )]
rank = r,

1 ... n

not all the coordinates vanish. Regarded as homogeneous coordinates they
are determined by the subspace U; indeed, they are independent of the
particular choice of the basis. Conversely, they determine the subspace
uniquely. Furthermore, they satisfy the relations

(P) if (J is a permutation of the index set {v" ..., vr } in {1, ... , n}, then
p( (J( vd, ..., (J( vr)) = sgn (J • p( VI' ..., Vr),

(R) for all choices of 2r indices J1.1' ... , J1.r-', VI' ... , Vr + I in {l, ..., n},

r + I

L (- 1)P + 'P(J1.1 , ... , J1.r _ I' V p) p( v" ..., vp _ I , V p + I' ... , V r + ] ) = O.
p=]

These are known as the PlUcker relations, see, e.g., B. L. van der Waerden
[23].

It is further known that the vectors ii(pl, p = 1, ... , r, defined by
-fp)_( . ) '-1 t' b' fU huj - P VI' ... , Vp _ I' }, VP + I' ... , Vr , } - , ... , n, lorm a aSlS 0 ,were
{VI' ..., vr} is chosen in such a way that p(v], ..., vr)#O.

Let p1-(vr +" ..., vn ), Vr + I' ... , Vn E {l, ..., n}, be the Pliicker-Gral3mann
coordinates of the orthogonal complement U 1- of U. If (v I' ..., Vn >denotes
the permutation j f-+ vj of the set {l, ..., n}, then the Pliicker-Gral3mann
coordinates of U and U\ respectively, are related by the equation
p1-(vr+]' ..., vn ) = sgn(v}, ... , vn >· p(v}> ..., vr ).

Henceforth U will always be an r-dimensional subspace of IR n
,

1~r~n-l, and {U(Il, ... , u(r)} will form a basis of U. Let us introduce the
classes of index sets 1m , 0 ~ m ~ r + 1,

I, := {(v): VE {l, ..., n}, p(v, N)=O for all Ne {l, ..., n}, #N= r-l};

12 := {(vI' V 2 ) : V.. V2 E {l, , n}, V, # V2' (vd, (v 2 )¢ I], p( VI' v2 , N) = 0

for all N c {l, , n}, # N = r - 2}.

In general, for 2 ~ m ~ r,

1m := {(VI' , Vm ) : v" ..., Vm E {1, ..., n}, pairwise distinct,

p(v l , , Vm , N) = 0 for all N e {l, ..., n},

# N = r - m, and for all (V'I, , v~) Ell"

1 ~J1.<m, {V'I, ... , v~} ¢ {v" , vm }};
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I r+ I := {(V I' •.. , Vr+ I) : v I , ... , Vr+ I E {I, ... , n },

pairwise distinct and for all

(v;, ... , V'IJEII" 1 ~!1~r, {v;, ..., v;,} r:f- {VI' ... , Vr+I}}'

Finally,

10 := {V : v E {I, ... , n },

For the notation of an index set we use round brackets instead of braces
although the order of the elements is of no importance.

In his paper [2] on subspaces of l~, F. Bohnenblust introduced the first
two classes for a subspace V of l~, 1 < P< 00, P i= 2, in order to determine
those subspaces which are the range of a contractive projection.

THEOREM 1. Let V be an r-dimensional subspace of IRn with the basis
u(1), ... , u(r), and let 1~ m ~ r + I ~ n. The following conditions on an index
set (v I' ... , Vm) are equivalent:

(i) (VI' ..., vm) belongs to 1m;

(ii) The matrix

is of rank m - I and any m - I rows are linearly independent;

(iii) pu,(v1, ... ,vm)=Ofor any m-dimensional subspace V' of V and
for all pairwise disjoint indices V'I, ... , v:n I E {v I' ... , Vm} there exists an
(m - I )-dimensional subspace V" of V satisfying p 1./"( v; , ..., v;,,_ I) i= O.

(iv) dim V1- n span {ev!, , evJ = I and if v E U1- n span {e v" ..., evJ\
{O} then vvi=Ofor all VE {VI' , vm}.

Each index set determines a minimal collection of linearly dependent row
vectors of the matrix

[

Ull) UlrlJ.

I n

For (v l' ... , Vm) Elm' I ~ m ~ r + 1, the theorem guarantees the existence of
r+l-m indices Vm+1'''',Vr+1 in {l, ...,n} such that p(vI"",VI'_I'
vI' + I' ... , Vr + 1),60, 1 ~!1 ~ m. Let <VI' ... , vn >be a permutation of {1, ... , n]
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it follows that

with the first r+ 1 indices determined as above, and let e=sgn<vl, ..., vn >.
Then the vector v in Theorem l(iv) is determined as follows:

Vl::::;jl::::;m V",,=p.l(vl"v r + 2, ..., v,,)

= sgn<VI' •.. , VI' I' VI' + I' ..• , Vr + I' V1" Vr + 2, ... , V" >
. p( VI' •.•, VI' _ l' V I' + 1 , ... , Vr + 1 )

= e . ( - 1)r + 1 - I' . p( VI' ••• , VI' _ l' VI' + 1 , .•• , Vr + I ).

Proof (i) => (ii). From the very definition of the index sets it follows
that (i) is equivalent to

(i)' For each jl-tuple of indices {v;, ..., v;.} C {VI' , Vm }, 1::::; jl::::;
m - 1, there is an (r - jl )-tuple of indices N' in {I, , n} such that
p(v; , ..., v~, N') #- 0, and p( VI' •.. , Vm' N) = 0 for all N c {1, ..., n}, # N = r - m.

Let us assume that (i)' holds, and let jl = m - 1. Then the row vectors of
the matrix

are linearly independent; i.e.,

[

U(ll

m-l = rank ,
VI ...

Assume,

[

Ulil '" Ulrl ]
rank = m.

VI ... Vm

Since dim V = r, there exist r - m further indices vm + l' ... , V r in {I, ..., n}
such that p( VI' ... , Vm' Vm+ l' ... , Vr) #- 0 which contradicts the fact that
p(v 1, .... , Vm , N) = 0 for all N c {I, ..., n}, # N = r - m.

(ii)= (iii). Let V' be an m-dimensional subspace of V; without loss
of generality we may assume that the first m basis vectors ul11, .••, U lml of U
form a basis of V'. From the fact that

[

U(I I ... Ulr1 ]
rank =m-l

VI ••. Vm

[

U(li •.. u lml ]
rank ::::;m-I;

\'1 ... \1 m

i.e., p (/' (v l, ••• , Vm) = O. On the other hand, for each subset {v;, ..., v;" _ d C

{VI' •.. , vm } there exist basis vectors U
lpli

, ...• , ulPm - 1i of U such that

[

UlP11 ... ulPm - tl]
det, , #- 0;

VI ••. Vm _ 1

i.e., the subspace U" = span {U lP11, ••. , ulPm - li } has dimension m - 1 and
satisfies the condition p U" (V'I' •••, V~, _ 1) #- O.
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(iii) = (iv). As seen above, condition (iii) implies that there are
(m - 1) basis vectors u1pil, ... , u lPm - il of U such that

Consequently, there is, up to a scalar multiple, a unique vector v E IR m
,

v i=- 0, which is perpendicular to all the column vectors of the matrix above.
Extending v to W by setting Vv = 0 for vE{I, ..., n} \ {VI' ..., vm }, we have

U~nspan {e"I'"'' eVm } = span {v}.

It remains to show that vV
p

i=- 0 for all 1~ f.1 ~ m. Assume VVI = O. Then the
vector (vv" ..., vvJT is perpendicular to each of the column vectors of the
matrix

But since the rank of the matrix above is equal to m - 1, all the coefficients
v"p' 1~ f.1 ~ m, of v have to vanish.

(iv)=(i). The vector (VVI' ... , vvJT i=-O is perpendicular to each of the
column vectors of the matrix

Thus the rank of this matrix is not greater than m - 1; i.e., the Pliicker
Graf3mann coordinates satisfy the condition p(v], ... , Vm , N) = 0 for each
choice of an (r - m)-tuple of indices N c {l, ..., n}. Suppose {v~, ..., v~} C

{VI' ..., vm } and (ViI> ... , v~)E/I" 1 ~f.1~m-1. Then there exists a vector
WE IR n

, wi=- 0, such that W v = 0 for all indices vE {I, ... , n} \ {Vii' ... , v~} and
(w v', ... , W v' ) T is perpendicular to each of the column vectors of the matrix
giv~n abo~e. In particular, W ¢ span {v}, but this is a contradiction to
W E U~ n span {e vl ' ... , evJ = span {v}. It follows that

[

U(I) ... U1rl]
rank I ,=f.1,

VI ... vI'

and consequently, we can complete the f.1 row vectors of this matrix with
r- f.1 further row vectors of the matrix [u(l::::~lr)] to form a basis of IR r

;

that is, there is an (r-f.1)-tuple of indices Nc{I, ...,n} such that
p( Vii' ... , v~' N) i=- O. I

If an index V belongs to the class 10 then the vth row vector of U is
linearly independent of each collection of the remaining row vectors of U;



LINEAR APPROXlMATION IN I:' 331

i.e., the vth coordinate of every vector in U.l vanishes. Thus the vector ev

belongs to V; i.e., there is a decomposition of V as follows:

U= U'EBIR#lo,

where U'c:lR n-#lo denotes the (r- #/o)-dimensional orthogonal projec
tion of V onto span {e v : v E {I, ... , n} \Io}'

There is a geometric interpretation of Theorem 1(iv). Let v be the vector
in U.l associated with an index set (v" ...,vm ) in 1m , l";;m";;r+l,~we

assume v to be normalized by the e-norm; i.e., Ivll =L;~I Ivv) = 1. Let
I = L:'+~\ #Im , and let us enumerate the vectors v from I to t. If b: (0)
denotes the closed unit ball of t~, and if Q := U.l n b: (0), then Q is a com
pact convex symmetric polytope. Indeed, we have the following theorem.

THEOREM 2. We have

ext Q= {±v1
, ••• , ±v'};

i.e., the normalized vectors v in U.l determined by the classification of
{I, ... , n} with respect to V are the extremal points of Q.

Proof Let v be the normalized vector in U.l associated with the index
set (VI' ..., vm ) in 1m , 1";;m";;r+ 1. Assume v is not extremal in Q; i.e., there
are vectors wand w' in Q and 0 < t < 1 such that v = tw + (1 - t) w'. Since

1= Ivll = L IVvl = I Itwv+ (I - t) w: I

,,;;I t IWvl + I (1- t) Iw:1

,,;; t Iwl l + (I - t) Iw'II";; 1,

where the sum is taken over the index set {v I' ... , Vm}, it follows that w
as well as w' have support on this index set; i.e., w, w' E U.l n
span {e V1 ' ••• , evJ. But then by Theorem 1(iv) the equations w = AV and
w' = A'v with 1),1 = 1):1 = 1 are true. It follows trivially that A= A' = 1, and
w = w' = v. Conversely, let v be an extremal point of Q, and let {v I, .•. , Vm}
be its support on {I, ..., n}, 1 ,,;; m";; n. We claim that m";; r + 1 and that

U.l n span {e vl , ..., evm } = span {v}.

Assume there is aWE U.l n span {eVI' ••• , evm}' normalized and linearly inde
pendent of v. Because of linearity we may assume that both v and w belong
to the (m - 1)-dimensional closed face

{YElRn: y = L pvsgnvvev,pv~O,and L Pv=l}
VE{V' •.•.• vm} ve{v] ..... vm}
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of the unit ball of I ~; where v even belongs to its relative interior. But then
v can never be an extremal point of Q. Since U~ n span {e V" ... , ev

m
} =

span {v}, clearly, m is less than or equal to r + 1. I
The aim is to describe the approximation behavior of U in I;:'; i.e., the

behavior of the metric projection P u on r:, as a set-valued mapping of [Rn

into U, as well as the behavior of the best approximants Pu(x) for a single
element x E [Rn. The basic tool will be the classification of the index set
{I, ... , n} by means of the Plucker-Gral3mann coordinates. Theorem I
gives various equivalent characterizations of those index sets (VI' ..., vm )

which belong to 1m , 1~ m ~ r + I. From the point of view of approxima
tion the characterization (iv) is the most useful one. It is related to a
theorem of T. 1. Rivlin and H. S. Shapiro on the characterization of the
elements of best approximation to a point in l~;. Theorem 2, on the other
hand, allows us to rewrite the problem of best approximation of a point as
a problem in linear optimization over the compact convex polytope Q
in I ,~.

2. THE METRIC PROJECTION

Let U be an r-dimensional subspace of [Rn, 1~ r ~ n -1, and let
P u : l,e;' -> U denote the metric projection of I;:' onto U. By definition, for
all x E IR n

,

Pu(x)= {UE U: Ix-uloo =dist (x; U)},

where dist: I;;' -> IR is the distance function on I;;". Puis a set-valued
mapping and PuCx) is compact and convex for each x in IR n

• Indeed,
Pdx) = Un bd(x), where bd(x) is the closed ball with center at x and of
radius d = dist (x; U). Moreover, for all x E IR n

, for all u E U, and for all
A. E IR

Pu(x+u)=Pdx)+u and

Because of these properties Puis said to be quasi-linear.
It is further known that Puis upper as well as lower semi-continuous,

see e.g., [22, pp. 58, 62]. While the first property is an immediate conse
quence of the finite dimensional setting, the lower s.c. was first observed by
A. L. Brown [4] in 1964; we shall come back to this fact in Section 4.

If Pu(x) is single-valued for each XE W, U is called a Chebyshev sub
space. It is well-known that U is Chebyshev exactly when each vector u E U,
#0, vanishes at at most r - 1 indices (Haar's theorem). Clearly, this is
satisfied exactly when for all r-tuples of indices (VI' ..., vr )



LINEAR APPROXIMATION IN 1;:=· 333

i.e., if and only if all the classes II' ..., I r are empty (and I r +] contains
exactly all possible (r + 1)-tuples of {I, ..., n}). More generally, following
G. S. Rubinstein [20] a linear subspace V of 1;:= has Chebyshev rank less
than or equal to t, 0 ~ t ~ r, if for all choices of (r - t)-tuples of indices
(v I' ... , Vr __ I) of {I, ... , n}

[

Ull ) ... u lr ) ]
rank =r-t.

VI '" Vr _ 1

This is true exactly when the classes I], ..., I r -1 are empty, see also [24].
Let us denote by

the metric complement of V in 1;:=; and let us set

the intersection of VIO) with the unit sphere SI (0) in 1;:=. The latter set can
be identified with the Blaschke boundary of V on SI (0). (W. Blaschke
introduced the notation Schattengrenze of Sj (0) w.r.t. u.) For this reason
the metric complement is also called the Blaschke cone of V in 1;:=;
obviously, V(O) is a cone with vertex at the origin.

Our first aim is to characterize V\O) by use of the classification of the
index set {I, ... , n} W.r.t. U. To do this, let us introduce the following
notation. For 1~ m ~ n, let

denote a relatively open face of S I (0) of dimension n - m, where VI' ... , Vm

are pairwise disjoint indices of {I, ..., n} and E,," = ± 1. Clearly, the faces are
pairwise disjoint and S 1(0) is equal to their union; moreover, a vector x in
SI (0) uniquely determines the face S to which it belongs.

Let v in [Rn, #0, be a vector with support {VI' ... , vm }. We shall use the
following abbreviations:

and

Consider a face S of S I (0) and an XES such that x belongs to its
Schattengrenze with respect to V, then S is contained in V\O), see the proof
below. That is why we shall loosely call S a face of V\O). The face S of V\O)
is said to be maximal, if it is not contained in the closure of a face of V\O)
of higher dimension.

640/76/3-4
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THEOREM 3. Let V be an r-dimensional subspace of IR n with basis vectors
u(l), , u(r), and let 1m , 1~ m ~ r + 1, be the classification of the index set
{I, , n} w.r.t. U. If (VI> ..., vm)Elm and ifv is the associated vector in [Ii-,
then ± Sv are maximal faces of V\O). And all maximal faces of U\O) are
determined this way, moreover,

V ([O)= U -S
v'

VE ext Q

where S,. is the closure of a maximal face and Q denotes the polytope
V~ nbl(O).

Proof Let XES = S(£v, ev" ..., £v'" ev.,) belong to V\O). By the Variational
Lemma of Rivlin and Shapiro [18, Theorem 1], there exist weights p". ~ 0,
1:: Pv. = 1, such that

m

L Pv.£v.· uv• = 0,
I'~[

'VUEU.

Within this setting, the lemma has probably older roots than the theorem
referred to above, but it seems to be difficult to point out a precise
reference. Since the equation above does not depend on the components Xv
of x, v E {I, ..., n} \ {VI' ... , Vm }, each x' E S belongs to V\O), Also, if S is a
maximal face of V\O), then the weights have to be strictly positive on
{vl, ... ,vm }·

Let the vector v be defined by v=PVl£V!·e j + ... +Pv",£"",·em. Obviously,
v E V~ and Ivl l = 1. We claim

span {v} = V~ n span {ev : v E supp v},

or (VI> ..., vm)Elm by Theorem l(iv). For m= 1 there is nothing to prove.
Assume there is a second vector w in V~ n span {e vI' ..., ev",}, linearly inde
pendent of v. A linear combination of wand v will lead to a new vector Wi

which vanishes in at least one index of {VI' ..., vm }; i.e., supp Wi is a real
subset of supp v. But then Sw' is a face in S[(0) which contains S in its
closure, a contradiction to the maximality of S.

Conversely, the vector v E ext Q satisfies the equation,

for all u E U.
vesuppv VESUpp V

From the Variational Lemma, it follows again that the face Sv belongs to
the Blaschke boundary of V on SI (0). Clearly, since the support of v is
minimal, S,. has to be maximal. I
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Let Sv be a maximal open face of V\O) and let x be a point of Sv' Setting
T = span {e" : vE {I, ..., n} \supp v}, it is not difficult to see that

dim Pu(x)=dim (Tn V)=r+ l-m.

Indeed, while the first statement follows from the fact that Sv is maximal
and open, the second one follows because (T + V).L = T.L n V.L = span {v}
and, consequently n-l = dim (T+ V)=dim T+dim V-dim (Tn V)=
n - m + r - dim (T n U).

If V has Chebyshev rank ~t, O~t~r, then m~r-t+l, or
dimPu(.1()~t. Conversely, if for all xEWdimPu(x)~t, then the classes
11 , ... ,1'_1 are empty, reproving G.S. Rubinstein's results [20] in the
discrete setting.

Let us conclude the section with two simple examples:

(1) Let V be a hyperplane in W, and let v be the up to a multi
plicative factor uniquely defined normal vector of U. There is just one index
tuple, say (VI' ..., vm ) Elm , 1~ m ~ n, and an index v belongs to the tuple if
and only if vE supp v. Clearly, 1o is the complement of {v l' ..., Vm} relative
to {I, ..., n} and U can be decomposed into

where U
r = V n span {e"I' ..., e"m}' In span {e"" ..., e"m}' considered as an

l~· in its own right, V r is a Chebyshev hyperplane.

(2) Let V be an one-dimensional subspace in IR n
, say V = span {u},

u ¥- O. There is the following classification:

and

where 1o is not empty exactly when V = span {e,,} for some index
v E {1, ..., n}.

3. THE CHARACTERISTIC INDEX SET

In this section we study the set of best approximations in V of an
individual vector x in I:;'.

The following duality relation

"ixEI:;', dist(x; V) :=min Ix-ul w =max <x, v)
ueU veQ

(*)

is well-known in functional analysis. R. C. Buck [5] attributes it to
M. G. Krein and to S. Banach. The following statement is an immediate
consequence of Theorem 2.
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THEOREM 4. For each x E I:

dist(x; U) = max <x, v).
vE {±v\, .... ±vf }

In almost all books on optimization (and approximation) one will find the
discrete Chebyshev approximation as an application of linear program
ming; in particular, one will find the statement that

dist(x; U)=max <x, v),
V~ Q

where Q = U1- n b~ (0),

see for example that of L. Collatz and W. Wetterling [7, Sect. 16]. Clearly,
the maximum of the linear form <x, v) over Q is assumed at an extremal
point of Q. The point here is that Theorem 1 gives a way of determining
the extremal points of Q explicitly. On the other hand, the simplex method
does not make an explicit use of all the extremal points to calculate the
maximum.

In the following we shall assume without loss of generality that for the
given subspace U the class /0 is empty. If x E 1R"\ U, and if

dist(x; U)=d= (x, v(l) = ... = (x, V(k» > (x, v'),

v(l), ... , V(k) E ext Q and v' E ext Q\ {v(l), ..., V(k)}, then, choosing any
UEPu(X), the equations

1~ K ~k,

imply that for each 1~ K, ). ~ k and for all 1~ v~ n

In particular, the extremal vectors v(ll, ..., V(k) define a face of bd Q; in
other words, their arithmetical mean determines a vector v in the boundary
of Q, known as the center of gravity of the face. It follows that

Vu E Pu(x) and Vv E supp v, U" + d· sgn v" = x,,;

i.e., all elements of best approximation of x in U are equal at the
indices v in supp v and the error x" - u" is maximal. Following 1. Descloux,
we call

Cx := {VE {I, ..., n}: IX,,-uvl =dist(x; U)VUEPu(X)}

the characteristic index set of x with respect to U, and denote by C~ its
complement in {l, ..., n}. Clearly, supp v c C<. Moreover, we have
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THEOREM 5. Let xEI';;'\V, and let dist(x;V)=<x,v(1»=
<x, V(k) = <x, v) > <x, v'), for v(1), ..., V(k) E ext Q and v' E ext Q\
{v(1l, ..., V(k)}, and for v =L: ~ 1v("l/k, then

k

C, = U supp vl"l = supp V.

11:= J

The theorem is crucial for a thorough investigation of the metric
projection. It goes back to J. Descloux and is stated and proved in his
doctoral thesis [8]. We shall give a proof by making use of a result of
R. T. Rockafellar [19, Sect. 22, Theorem 22.6] on linear inequalities:

THEOREM. Let L be a subspace of [RN, and let J 1 , ..•, I N be real intervals.
Then one and only one of the following alternatives holds:

(a) There exists a vector z = «( l' ... , (N) E L such that

(b) There exists a vector z* = (a, ..., (~) E L.l such that

(rJ t + ... +(~JN>O.

If alternative (b) holds, z* can actually be chosen to be an elementary vector
ofL.l.

The intervals are considered to be nonempty; no further restrictions are
assumed. R. T. Rockafellar defines a vector of a subspace to be elementary
if its support is minimal. In our notation a vector in L.l is elementary if it
is up to normalization equal to an extremal vector ot L.l n6:(0). Thus a
classification of the index set {l, ..., N} w.r.t. L determines all elementary
vectors in L.l, as proved in Theorem 2.

Proof of Theorem 5. It remains to prove C, C supp v. It follows from
the convexi ty of Pd x) that for any index vE C, and for all u E Pu (x) either
Xv - U" = dist (x; V) or = -dist (x; V).

Let us assume without loss of generality that x E Vial, and let va E C,.
Then x vo = 1 or = - 1. We restrict ourselves further to x vo = 1. Hence, for
all elements u of best approximation of x uvo = 0 holds. Set N = r + n. With
respect to the equation u + (<5 - x) = 0 in W, <5 being the error, the
following system (A) has a solution, while system (B) does not.

(A)

r

L:!Xpu~,p) + IX r + v = 0,
1'=1

(XI' E [R =: J p ,

IXr+vE{O}=:Jr+v,

IXr+vE [-xv-I, -xv + 1] =: J r + v ,

V E { 1, , n};

P E {l, , r};

v = va;

VE{l, ...,n}\{vo}·
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(B)
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L GtpU~,p)+Gtr+v=O,
p~1

Gt p E [R =: J p ,

Gt r + v E [-2,0) =: J r + v'

Gtr+vE[-xv-l, -xv+I]=:Jr + v ,

VE {l, "', n};

pE {I, .." r};

vE{I, ...,n}\{vo}·

We let L be the r-dimensional subspace of [RN the orthogonal complement
Ll- of which is spanned by the column vectors of the matrix

U(I) U(I)
1 n

U(rl U(r)
E[RNxn,I n

0

0

Since system (B) has no solution, by R. T. Rockafellar's alternative there
exists a vector z* = (a, .,., (~) E L 1. such that

for each vector z= «(I' "., (N), (I EJ1, ..., (NEJN·
Let us look at the vector z* more closely. At first we remark that

,~+ vo #- 0; the coefficient being equal to zero is in contradiction to the
solvability of system (A). Moreover, since the coefficients (1' .", C of z are
unrestricted, the coefficients (f, .", (: vanish. Hence, we can rewrite z* as

p= 1,2, .", r; v= 1, 2, "., n,

where v is a vector in Ul-. We choose Ivl J = 1. If Vv = 0 for all v#- Yo, then
<z*,z)=v"o(>O, -2~«0; i.e., vvo=-I, and v=-evo is an extremal
point of Q; as before, Q being the closed convex polytope Ul-nbl(O).
Hence <x, -v)=I, and consequently VoESUppV.

Assume ,uECx\{Vo}. As seen above, sgnv vo = -1. Setting (,+v=O for
v#-vo , fl., and setting (r+/, in turn equal to -x/" -x/,+ I, and -x/'-l,
we obtain

and -2~(<0.

By assumption, Ix/,I ~ 1. For the three inequalities to be true, we have to
have IXI'I = 1 and sgn vI' = -xl" Hence <x, -v) = 1.
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Let -v be the convex combination of the extremal vectors v(l), ... , V(k) of
Q, say -V=L:~I PKV(K), PI' ..., Pk>O, L:=1 PK= 1, then

k k

1=(x, -v)= L f3K(X,V(K)~ L PK=1.
K=l K=J

Consequently, (x, V(K» = 1 for 1~ K ~ k, and Vo E supp V= UI ~ K~k supp V(K).

I
The proof uses methods of linear optimization. R. T. Rockafellar's

theorem allows one to consider a single index; the "traditional" methods in
approximation theory such as the Kolmogorov criterion, and its deriva
tion, the Variational Lemma, seem not to be sufficiently sensitive to yield
Theorem 5.

J. Descloux in his proof makes use of a theorem of H. Weyl on the
solutions of homogeneous linear inequalities. He calls the index sets
of the classification cadres and defines them via characterization (ii) of
Theorem 1.

In the fifties S. I. Zuhovickii [24] investigated the approximation of real
valued functions in the sense of P. L. Chebyshev on compact point sets and
particularly on minimal subsets of these compacta, which are index sets in
our notation. His definition, however, is still tied to a vector x E W \ u.

J. R. Rice in his famous AMS Bulletin note [16] on the strict
approximation denotes these index sets critical points sets of best
approximation to x; see also [17, Chap. 12-7]. He uses the phrase set of
critical point sets denoting ex' Rice's approach, however, is more difficult
to follow than Descloux's one.

In 1961, T. J. Rivlin and H. Shapiro [18] introduced what they called
an extremal signature (on a compact Hausdorff space T), see also
H. Shapiro [21, Chap. 2.6]. B. Brosowski [3] picked up their notion and,
more recently, W. Li [13] again; both define primitive extremal signatures.
Using our notation a primitive extremal signature (J of U -is a mapping
from {I, ..., n} to { -1, 0, I} which corresponds to an extremal vector v in
U1.; i.e., (J( v) = sgn Vv' for all v E { 1, ..., n }. Their approach is closer to that
of J. R. Rice.

F. Bohnenblust's paper [2] on Subspaces of Ip •n Spaces and his use of
Pliicker-Gral3mann coordinates of the linear subspace U in IR" was the
starting point of my investigation on discrete linear Chebyshev approxima
tion. When I saw the connections between my considerations and the
results of Zuhovickii, Rice, Rivlin and Shapiro, Descloux, and Brosowski,
which date back more than 30 years, I was at first puzzled, later they
strengthened my confidence. The approach via Pliicker-Gral3mann coor
dinates does exceed theirs and does lead to new results as we proved so far
and will continue to prove.
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4. DECOMPOSITION OF I;:: \ U

As before we assume that the index class 10 is empty. Let us choose a
face of bdQ with extremal points ViI), ... , VlkJ , which is uniquely determined
by their arithmetical mean v =L: ~ I VIK)/k and which will henceforth be
denoted by face", and let us define

K,,:= {XE W: dist(x; U)= (x, v(l» = ... = (x, V(k) = (x, v) ~ (x, Vi)

'>I Vi Eext Q\ {v(l), ..., V 1k )}},

and

K~.O) := cone {S,,}

= {x E UIO) : Xv = d· sgn vv' v E C n and Ix,,1 < d, v E C'n d> O}.

For all x EK,. its characteristic index set C. is equal to supp v, for this
reason we shall write C" whenever we are discussing the approximation
behavior of U on the cone. Since Q has only finitely many faces, there are
finitely many characteristic index sets, hence finitely many cones K and
KIO), respectively.

By the definition of these cones and by use of Theorem 5, we can extend
the statement of Theorem 3.

THEOREM 6. By use of the notation given above, the cones K,,, face v being
a face of bd Q, are convex, relatively open, and pairwise disjoint. They satisfy'
the relation

and decompose IW \ u.
In particular, for each v E ext Q, K,. is an open convex cone and U" E ext Q K"

is dense in IR n
•

It follows that for all x E K,.

(x+ U)nK~O)#0;

i.e., there exists an element of best approximation u of x such that
lx, - u,l < d, vE C~, where d is the distance of x from U. Furthermore, for
all x E K"

Moreover, the lower semi-continuity of P u follows easily. To indicate the
proof, we may restrict ourselves to x lO ) E K~.O) and may select the origin as
element of best approximation.
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The vector v determines a subspace

of V of dimension

[
u(l) u<rl]

r' := r - rank C" ;

341

let us assume that the first r' basis vectors of V, u(l), ..., u(r'l, are a basis
of V".

Choose a sequence {X<k l }, converging to x lO ) as k --+ 00, and choose any
sequence {U(k l } in U, where U(k) = L~~ 1 CX~k)U(Pl belongs to pu(X(k)).

Because of the upper semi-continuity of P U, U~k) --+ 0 as k -> oc; for v E C"
and since

[
u(r' + 1) ••• u<rl]

rank =r-r',
C"

the coefficients O(~~~ l' ... , CX~kl converge to zero as k --+ 00 as well.
We claim, that for k large, the element

p =r'+ 1

belongs to P u (.~(k I). Indeed, for vE C"

where dk and do are the distances of X<k) and x(O) from V, respectively,
while for v E C;

the last two terms on the right-hand side converge to zero as k --+ C1J, and
the first one is strictly less than do. Since dk -> do as k -> 00, the left-hand
side is strictly less than dk for k large.

Selecting for XE IRn\u the element in Pdx) which has minimal
Euclidean norm, one obtains a continuous selection of the metric projec
tion which possesses the property called Nulleigenschaft; i.e., for x E ViOl

the origin is selected. It was G. Nurnberger [15] who pointed out that the
existence of a continuous selection with Nulleigenschaft is sufficient for
lower semi-continuity of the set-valued metric projection. Two years later
H. Kruger [12] proved the necessity for complete subspaces.
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Further selections are easy to construct: Taking the center of Pv(x) w.r.t.
the Euclidean norm, or the center of gravity of Pv(x), by continuity of the
metric projection one obtains a continuous selection, respectively; see,
e.g., [11].

5. THE METRIC PROJECTION ONTO A CHEBYSHEV SUBSPACE

In this case 10 as well as all index classes 1m , 0 ~ m ~ r, are empty, while
I r + 1 includes all possible (r + 1)-tuples of pairwise disjoint indices. Let us
take face l' of bd Q and let K l' be the corresponding relatively open convex
cone in /Rn \ U, as defined in the previous section.

THEOREM 7. On K l' the metric projection is linear.

Proof Let x and i belong to K l' , let u and u be their elements of best
approximation in U with distances d and d, respectively, and let x(O) and
-(0) b h' . .. . K(O) 0 C - { , ,}x e t elr respectIve projectIons In l" n v - ~ 1 , ... , ~ r + 1

while

and

and on C:..
Clearly x + .X' E K,,, X(OI + i(O) belongs to K~,o), and by the uniqueness of the
representation,

x +.X' = (x(O) + itO)) + (u + u) = (x + .X')(O) + P v (." + i).

It follows that

and dist(x + .X'; U) = d+ d,

proving additivity. Since the metric projection is homogeneous, we have
trivially

and dist(Ax; U) = IAI dist (x; U),

Clearly, these arguments carryover to K" = ~O) + U. I

Because of uniqueness, P v is continuous, and because of P v being linear
on the closed convex cones Kv , v E ext Q, we reproved the following
corollary which goes back to A. K. Cline [6] and M. Bartelt [1].

COROLLARY. P v is a globally Lipschitz-continuous projection of /Rn
onto U.
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For a cone KL., v Eext Q with support {v b"', Vr + I}, we can explicitly
determine the metric projection. Indeed, for x E K" the system of linear
equations

I IXpU~P)+<>v=Xv,
p~1

subject to the constrains

I ~ v~ n,

<>v=d·sgnvv, 'VVEC", and

is uniquely solvable. Choosing an index VEe;, and considering the sub
system determined by the indices VI' •••, V r + 1 and v, the column vectors of
the corresponding coefficient matrix

[

U(I)
VI

H= ('1)
U

Vrtl

U(l)
v

sgn V"J ]

. EIR(r+2)x(r+1)

sgn Vv,+ 1

o

span a hyperplane in IW + 2, A non-zero vector perpendicular to H can be
determined by use of the Pliicker-Gral3mann coordinates of H, its
coefficients are given by

r + I

PH(VI, ••• , Vr+ d = L (-1)'+ I +/l p(v l , ... , v/l- I ' v/l+ 1> , .. , Vr+ d· sgn vv.,
1'= I

for )=r+2, while for I ~)~r+ I,

j- 1

= I (_I)'+I+!1
/l~l

.p( VI, ... , V /l _ I' V/l + I , ... , Vj - I' Vj + I' ... , Vr + I' v) . sgn vv.

r+ I

+ L (-I)'+/l
/l~j+ I

For x E K v , the element of best approximation u(O) of x in U is then given
by

u(O)= Pv ·x,
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where the projection matrix P" = (n: ~~) E ~n x n is determined by

{

b""" - sgn v" . vv",

("1= (_1)r_J1PH(VI, ...,VJ1-1,VI<+I, ...,Vr+I,V)
nvv ( ,

" PH VI' ... , Vr + t>
0,

(jVJ1 being the Kronecker symbol.

6. THE STRICT ApPROXIMATION

VJ1EC,,, VEC",

otherwise,

Here we want to extend the result of the previous section to the non
Chebyshev case. The role of the best approximation which in the
Chebyshev case is a continuous point-valued projection of ~n onto V, is
played by the strict approximation, the "best" of the best approximation.
The concept of strict approximation, i.e., of selecting for a vector in ~n an
element of best approximation such that the error is minimal in each
component, was introduced by 1. R. Rice [16]. We follow J.Descloux's
construction [9] which differs somewhat from Rice's one and which in our
notation reads as follows:

Let 10 , ... , Ir + 1 be the classification of the index set {I, ... , n} W.r.t. U.
Let x E ~n \ u. If II is an index belonging to 10 , we define the v th com

ponent of its strict approximation to be equal to xv. So we may as well
assume that 10 = 0.

It follows from Theorem 6 that there exists a face of bd Q, say face,., such
that x belongs to K,.. As in Section 4, let V" denote the linear subspace of
V defined by

V" = {u E V : U I' = 0, II E CJ ;

and let us recall that VI) has dimension

, [UP) ... u(r)]
r =r-rank C,. .

If r' = 0, then x has a unique element of best approximation which we
define to be its strict approximation, too.

Let 0 < r'( ~ r). We may select a basis of V such that the first r' vectors
u(1), ... , u(r'J, form a basis of VI)' With this convention we obtain for each
U = .L~ ~ 1 IX p u(p) E P u (.'J() the representation

I: iXpU~) + d sgn v" = X,.,

p ~r' + 1



LINEAR APPROXIMATION IN I'; 345

where d is the distance and where the coefficients rxp, r' + 1 ::::; p::::; r, are
uniquely determined, while

r'

L rxpu~,P)+ L rxpu~,p)+<5"=x,,,
p ~ [ p ~ r' + 1

VEC;,.

For the error <5 = x - u, 1<5,,1::::; d on C;" there exists, however, an element of
best approximation of x for which 1<5,,1 < don C;, holds true.

Next we restrict x to the index set C;, and write x', and similarly,
we write V' = span {U'(ll, ... , u,(r')} for the restriction of V", In case

, ",r '(pi bIt V'·'X -L..p~r'+l !Y.pu eongs 0 ,I.e.,

r'

L !Y.~u~(p) + L !Y.pu~(pl = x"'
p = 1 P ~ r' + 1

VEe',

for some !Y.;, ... , !Y.~', then the strict approximation of x is defined by

r'

u'= L !Y.~u(P)+ L rxpu(PI;
P ~ I p = r' + 1

again, we are done. Otherwise, let I~, ..., I~, + 1 be the classification of the
index set C~ with respect to V'. I~ has to be empty, since an index in I~ will
also belong to 10 which is assumed to be empty. Thus V' does not
degenerate to {O} and also to IR n

', n' = #C;,. But then there exists a face
of bdQ', say face"" such that x' - L~~r' + 1 !Y.pu'(PI belongs to K",. Let

V"' = {u' E V' : u~ = 0, V E C",},

and let u'(I), ...,u,(r") be its basis. For each U'EPu,(X'-L~~r'+l!Y.pU'(I'I)

r'

'\' (p)+ '\' (pl+d' '-L, !Y.pu" L, !Y.pu" sgnv"-x,,,
p = r" + 1 P = r' + 1

VEC""

where the distance d' < d, and where the coefficients !Y. p' r" + 1 ::::; p::::; r', are
again uniquely determined.

If r" = 0, we are done; otherwise we continue the process. After s steps,
s::::;n-r, one obtains a uniquely defined element US in Pu(x), the so-called
strict approximation of x.

In other words, there exist a sequence of v-vectors, say v1
, ••• , vS

, a corre
sponding sequence of pairwise disjoint characteristic sets C I

, ... , C, a
sequence of subspaces (V = )V 1

=:> ••• =:> V S of dimensions r 1
, ••• , r" respec

tively, and a sequence of distances (d=) d[ > ... > d, > 0, such that US is
uniquely determined and the error x - US satisfies

<5" = du sgn v~ for V E ca, 1 ::::; (j ::::; s,
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or, for some 1~s' ~s-1

<5 = {d" sgn v~
" 0
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forvEC", 1~a~s',

for v otherwise;

to simplify notation we write C" instead of Cvo. Let us, in addition, write
CS + 1 for the indices of {I, ..., n} not belonging to any C", 1~ a ~ s. Take
such a sequence of v-vectors, say vI, ..., vS

, and the corresponding sequence
of characteristic sets, C I

, ... , CS, and Cs+ I, the convex cones

K~.?) .. v' := {x E IRn : there exists d l > ... > ds> 0 such that

x" = d" sgn v~ for all vEC", and 1~ a ~ s,

and Ix,,1 < ds for all vECS+ I}

and, for 1 ~ s' ~ s - 1,

L~.?) ,,, := {x E IR" : there exists d l > .,. > ds ' > 0 such that

x" = d" sgn v~ for all vE C", and 1~ a ~ s',

and x" = 0 otherwise}

belong to the metric complement V(O) of V and the ongm is the strict
approximation to each of its elements. Clearly, if for two different
sequences of v-vectors the first vectors VI ... vs

' are equal, so are the
associated cones L~?) IT" 1~ s' ~ s - 1.

It follows from above that for each x E IRn\ V there exists a sequence of
v-vectors, Vi, ... , vS

, such that x belongs to

or

Moreover, the finite family of K- and L-cones partitions IR"\V; i.e., for all
x E IRn \ V there exists a unique K-cone or L-cone such that

x=XO + US.

As in the Chebyshev case, the strict approximation is linear on each
cone. The strict approximation is known to be continuous, see, e.g.
[17, Sects. 12-7] or [8,9]; it also follows almost immediately from the
considerations given above. Indeed, the following stronger statement holds
true, which was conjectured by W. Li [13] in 1990:

THEOREM 8. The strict approximation is globally Lipschitz continuous.

Let us consider a sequence of v-vectors, say VI, ... , vS
, and let K~?).v' and

L~?) .. IT" 1~ s' ~ s - 1, be the corresponding cones in V(O). The cones are
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relatively open. In case all vectors vO", 1:::;; a :::;; s, are extremal, the cone
K~?). '" is of dimension n - r, and, consequently,

is open in IRn. Indeed, let C I
, ... , C be the associated sequence of charac

teristic sets, and let m 1, •••, mS be their respective cardinality.
If vO" is extremal, rO"+I=rO"-mO"+l, l:::;;a<s, while O=,.'-ms +l. It

follows that m l + ... + m S = r + s and that the cardinality of C + 1 is equal
to n - r - s. Hence the dimension of K~,?) ,,, equals n - r. On the other
hand, if vO" is a proper mean of extremal vectors, then rO" - mO" + 1< rO" + 1,

1 :::;; a < s, while rS
- m S + 1< O. Hence the dimension of K~.?) .. v' is strictly

less than n - r. Clearly, the cones L~?) .. ,"' are of dimension strictly less than
n - r. The union of all cones Kvl ... "" where the v-vectors are all extremal,
form an open and dense subset of IRn.

We actually do not need these considerations. Since there are only
finitely many relatively open cones which decompose IRn\ U, there have to
be open ones the union of which is dense. The argument given above
characterizes these open cones.

In some way the strict approximation is a "maximally" linear continuous
selection.

7. LINEAR SELECTION

It is a trivial fact that the metric projection onto an r-dimensional sub
space U of I;:' admits a linear selection if and only if the metric complement
U(O) contains a subspace of dimension n - r, see, e.g., [10] for a general
discussion of this matter as well as [14]. The classification of the index set
w.r.t. U characterizes U(O) and as a consequence allows further charac
terizations of linear selections.

THEOREM 9. The metric projection P u admits a linear selection, exactly
when

(i) the union of the classes II' ..., I r + 1 contains n - r pairwise disjoint
index sets, or

(ii) there exists a basis in the orthogonal complement of U the vectors
of which have pairwise disjoint supports.

The two characterizations are obviously equivalent, we only have to
prove one. The proof rests on the following lemma which is of some
interest in itself.

LEMMA. An s-dimensional subspace L of IRn, I:::;; s:::;; n, has a basis the
vectors of which attain their maximum norm on pairwise disjoint index sets.
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Proof For s = 1 and s = n there is nothing to prove.
At first we claim the existence of a relatively open face S of the unit

sphere SI(O) in 1':: for which dim (LnS)=s-1. Otherwise all relatively
open faces S of SI (0) satisfy dim (L n S) < s - 1, and, consequently,
L n S 1 (0) has dimension less than s - I, which is a contradiction.

To construct the basis, let SI be a face in SI (0) with dim (SI n L) =
s - 1; i.e., SI n L contains linearly independent vectors wI, 11'1 + y1, ... ,

Wi + y' I which attain their maximum norm at the index set J 1 determined
by SI. The vectors i, ..., y' - 1 belong to L and have their support on
{I, ..., n} VI; they determine an (s - 1)-dimensional subspace L 1 of L. We
repeat this process on L 1 , and so forth, and obtain a basis 11'1, •.. , w s

- 1 of
L with the desired property. I

Proof of Theorem 9. Let L be an (n - r)-dimensional subspace of U'O).
The lemma guarantees a basis of L the vectors of which attain their maxi
mum norm at n - r pairwise disjoint index sets. By the characterization of
U\O), each of this l;~-normed basis vectors of L belongs to a face S" of U\O),
v being a vector in UJ.. with support in one of those n - r pairwise disjoint
index sets.

Obviously, each of these index sets contains a sub(index)set belonging to
one of the classes II, ..., I r + 1 •

Conversely, let us denote the n - r disjoint index sets of the classification
by J I , ••• , J,,_n and let v(l), ... , v(,,--r) be the corresponding extremal vectors
of Q. The vectors

11'(1') = L sgn v~p) ev ,

VEJp

1~ p ~n -r,

belong to U(O) and define an (n - r )-dimensional subspace of U(O). I

It follows from the proof that the vectors u(l), .•• , u{r), »,(1 I, ... , »,(,,- r) form
a basis of (R"; i.e.,

n-r

for all x E (R" x = " IX u1p
) + " f3 w{p)~ p ~ p ,

1'= I p~ 1

Taking into account that the extremal vectors v(n), 1~ (J ~ n - r, satisfy the
orthogonality relations

1~p ~ r,

and

1~p~n-r,
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we obtain fJp= <x, VIP) for all 1~p~n-r. The linear selection L u of P u
determined by L = span {w(l), ... , wIn - rl} is given by

n-r

Lu(x) = x- I <x, vIP) wIP ).

p~l

In case the index class f o is empty, it follows from above that the linear
selection is uniquely determined and equal to the strict approximation.

Finally, in his paper on linear selections P.-K. Lin [14J proved that Pu
admits a linear selection if and only if there exists a basis u(l l, ..., u1r ) of V
such that #supp u1p )~ 2, 1~ p ~ r.

Indeed, his characterization is equivalent to the ones in Theorem 9:
If Vi- has the basis v(ll, ..., vln -

r
) satisfying property (ii) of Theorem 9,

it is straightforward to construct a basis of V the vectors of which are
supported by at most two indices. The converse is proved similarly.
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